VPROBE

Wireless Hand-Held Probing

Agility, flexibility & portability

vProbe's wireless technology syncs perfectly with Omnitrac2 and Radian laser trackers. vProbe makes it easier to operate in your workspace without having to reposition your tracker or fixtures. Ideal for hidden points, deep holes and hard to reach measurements.

Gain flexibility and speed and take portability to the next level!

FEATURES & BENEFITS

True Wireless Portability

vProbe uses wireless technology and integrated battery allowing portable measurement for up to 6 hours on a single charge.

Long-Range Measurement

The vProbe boasts a large operating volume up to a 40 meter radius with minimal performance degradation.

Dynamic Scanning

vProbe's dynamic scanning capability provides instant coordinate feedback, allowing the operator to take measurements faster than competing systems.

Compact Design

The vProbe has a lightweight design and fits with the tracker in a single carrying case with.

Ergonomic

vProbe can be operated for longer periods of time with its lightweight design and easy-hold grip.

Multiple Stylus Options

Variety of styli are available - lengths 50mm to 500mm and multiple tip diameters.

Flexibility

Dual stylus locations, easy indicator lights, and a stylus toggle switch makes measurements with the vProbe quick and convenient.

VPROBE is now compatible with both OT2 & Radian laser trackers.

PRODUCT SPECIFICATIONS

[Metric Units]

Parameter

Radial Tracking Distance

Wireless Frequency Lithium Ion Battery Weight

Specification

Up to 80 m (With wireless extender)

2.4 GHz 6+ working hours 0.68 kg

Probe Accuracy: 150mm Effective Stand-off (w/100mm Stylus)*

	7m	15m	Above 15m
3D Points (3D [∪])	75µm	115µm	40μm + 5μm/m
Spatial Length (SL ^U)	50µm	85µm	10μm + 5μm/m
Sphere Radius (R [∪])	30µm	40µm	10µm + 2µm/m

Probe Accuracy: 100mm Effective Stand-off (w/50mm Stylus)*

	/m	15m	Above 15m
3D Points (3D [∪])	55µm	100µm	30µm + 5µm/m
Spatial Length (SL ^U)	40µm	85µm	10μm + 5μm/m
Sphere Radius (R ^U)	20µm	40µm	10μm + 2μm/m

^{*}These values represent the Maximum Permissible Error (MPE) between a verified Scale Bar and the expected performance of the instrument.

Definitions

3D Points Uncertainty (3D^U)

 $3D^{\cup}$ is the deviation between a point measured with the $vProbe^{\intercal M}$ and the nominal position** of that point

Spatial Length Uncertainty (SL^U)

 SL^{\cup} is the deviation between a length measured with the $\nu Probe^{TM}$ (in a static orientation) and its nominal value.**

Sphere Radius Uncertainty (R^U)

 R^{\cup} is the deviation between a measured sphere's radius and its nominal value** where the reference sphere has a radius between 10 mm and 50 mm.

Measurement Unit Specification

 $3D^{\text{U}},~SL^{\text{U}},~\text{and}~R^{\text{U}}$ are further specified as a function of the distance between the laser tracker and the measured surface.

^{**} Nominal Values are established by the Laser Tracker